Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(12): 105671, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36536677

RESUMO

The cheetah Acinonyx jubatus, the fastest living land mammal, is an atypical member of the family Felidae. The extinct feline Miracinonyx trumani, known as the North American cheetah, is thought to have convergently evolved with Acinonyx to pursue fast and open-country prey across prairies and steppe environments of the North American Pleistocene. The brain of Acinonyx is unique among the living felids, but it is unknown whether the brain of the extinct M. trumani is convergent to that of Acinonyx. Here, we investigate the brain of M. trumani from a cranium endocast, using a comparative sample of other big cats. We demonstrate that the brain of M. trumani was different from that of the living A. jubatus. Indeed, its brain shows a unique combination of traits among living cats. This suggests that the case of extreme convergence between Miracinonyx and its living Old World vicar should be reconsidered.

2.
PLoS One ; 15(5): e0223872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469936

RESUMO

We employed the widely-tested biophysiological modeling software, Niche Mapper™ to investigate the metabolic function of the Late Triassic dinosaurs Plateosaurus and Coelophysis during global greenhouse conditions. We tested a variety of assumptions about resting metabolic rate, each evaluated within six microclimate models that bound paleoenvironmental conditions at 12° N paleolatitude, as determined by sedimentological and isotopic proxies for climate within the Chinle Formation of the southwestern United States. Sensitivity testing of metabolic variables and simulated "metabolic chamber" analyses support elevated "ratite-like" metabolic rates and intermediate "monotreme-like" core temperature ranges in these species of early saurischian dinosaur. Our results suggest small theropods may have needed partial to full epidermal insulation in temperate environments, while fully grown prosauropods would have likely been heat stressed in open, hot environments and should have been restricted to cooler microclimates such as dense forests or higher latitudes and elevations. This is in agreement with the Late Triassic fossil record and may have contributed to the latitudinal gap in the Triassic prosauropod record.


Assuntos
Evolução Biológica , Dinossauros/fisiologia , Software , Animais , Fenômenos Biomecânicos , Clima , Dinossauros/genética , Fósseis , Filogenia , Sudoeste dos Estados Unidos
3.
PeerJ ; 7: e7247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333906

RESUMO

The last two decades have seen a remarkable increase in the known diversity of basal avialans and their paravian relatives. The lack of resolution in the relationships of these groups combined with attributing the behavior of specialized taxa to the base of Paraves has clouded interpretations of the origin of avialan flight. Here, we describe Hesperornithoides miessleri gen. et sp. nov., a new paravian theropod from the Morrison Formation (Late Jurassic) of Wyoming, USA, represented by a single adult or subadult specimen comprising a partial, well-preserved skull and postcranial skeleton. Limb proportions firmly establish Hesperornithoides as occupying a terrestrial, non-volant lifestyle. Our phylogenetic analysis emphasizes extensive taxonomic sampling and robust character construction, recovering the new taxon most parsimoniously as a troodontid close to Daliansaurus, Xixiasaurus, and Sinusonasus. Multiple alternative paravian topologies have similar degrees of support, but proposals of basal paravian archaeopterygids, avialan microraptorians, and Rahonavis being closer to Pygostylia than archaeopterygids or unenlagiines are strongly rejected. All parsimonious results support the hypothesis that each early paravian clade was plesiomorphically flightless, raising the possibility that avian flight originated as late as the Late Jurassic or Early Cretaceous.

4.
Anat Rec (Hoboken) ; 297(7): 1262-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24532488

RESUMO

A vertebral element assigned to an Apatosaurus cf. ajax from the Late Jurassic Morrison Formation is described. The specimen exhibits an unusual morphology where two vertebrae are nearly seamlessly fused together, including the haemal arch that spans them. This morphology is thought be the result of a developmental abnormality. CT scans of the specimen reveal a thin zone of dorsoventral thickening between the two neural arches consistent with cortical bone. Contrast in internal morphology differentiates the anterior and posterior vertebral bodies with the anterior expressing greater porosity, which increased accommodation for barite-rich calcite precipitation. No vacuities are observed to suggest the former presence of an intervertebral disk or intervertebral joints: the absence of an intervertebral disc or intervertebral joints is indicative of a condition known as block vertebra. Block vertebrae occur with the loss, or inhibition, of somitocoele mesenchyme early in embyogenesis (i.e., during resegmentation of the somites responsible for the formation of the affected vertebra). The derivatives of somitocoele mesenchyme include the intervertebral disc and joints. Although vertebral paleopathologies are not uncommon in the fossil record, this specimen is the first recognized congenital malformation within Sauropoda. Anat Rec, 297:1262-1269, 2014. © 2014 Wiley Periodicals, Inc.


Assuntos
Dinossauros/anormalidades , Coluna Vertebral/anormalidades , Animais , Fósseis , Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X
5.
J Colloid Interface Sci ; 303(2): 404-14, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16945384

RESUMO

The interaction of metalloproteins with oxides has implications not only for bioanalytical systems and biosensors but also in the areas of biomimetic photovoltaic devices, bioremediation, and bacterial metal reduction. Here, we investigate mitochondrial ferricytochrome c (Cyt c) co-sorption with 0.01 and 0.1 M phosphate on hematite (alpha-Fe2O3) surfaces as a function of pH (2-11). Although Cyt c sorption to hematite in the presence of phosphate is consistent with electrostatic attraction, other forces act upon Cyt c as well. The occurrence of multilayer adsorption, and our AFM observations, suggest that Cyt c aggregates as the pH approaches the Cyt c isoelectric point. In solution, methionine coordination of heme Fe occurs only between pH 3 and 7, but in the presence of phosphate this coordination is retained up to pH 10. Electrochemical evidence for the presence of native Cyt c occurs down to pH 3 and up to pH 10 in the absence of phosphate, and this range is extended to pH 2 and 11 in the presence of phosphate. Cyt c that initially adsorbs to a hematite surface may undergo conformation change and coat the surface with unfolded protein such that subsequently adsorbing protein is more likely to retain the native conformational state. AFM provides evidence for rapid sorption kinetics for Cyt c co-sorbed with 0.01 or 0.1 M phosphate. Cyt c co-sorbed with 0.01 M phosphate appears to unfold on the surface of hematite while Cyt c co-sorbed with 0.1 M phosphate possibly retains native conformation due to aggregation.


Assuntos
Citocromos c/química , Compostos Férricos/química , Mitocôndrias/enzimologia , Fosfatos/química , Absorção , Animais , Cavalos , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Miocárdio/enzimologia , Oxirredução , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...